On complete reducibility of tensor products of simple modules over simple algebraic groups

نویسندگان

چکیده

Let G G be a simply connected simple algebraic group over an algebraically closed field alttext="k"> k encoding="application/x-tex">k of characteristic alttext="p greater-than 0"> p > 0 encoding="application/x-tex">p>0 . The category rational -modules is not semisimple. We consider the question when tensor product two L left-parenthesis lamda right-parenthesis"> L ( λ stretchy="false">) encoding="application/x-tex">L(\lambda ) and mu μ )\otimes L(\mu reducible as -module if only -module.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cohomology of Small Irreducible Modules for Simple Algebraic Groups

LetG be a quasisimple, connected, and simply connected algebraic group defined and split over the field k of characteristic p > 0. In this paper, we are interested in small modules for G; for us, small modules are those with dimension ≤ p. By results of Jantzen [Jan96] one knows that anyGmodule V with dimV ≤ p is semisimple. (We always understand aG-module V to be given by a morphism of algebra...

متن کامل

Unique Decomposition of Tensor Products of Irreducible Representations of Simple Algebraic Groups

We show that a tensor product of irreducible, finite dimensional representations of a simple Lie algebra over a field of characteristic zero, determines the individual constituents uniquely. This is analogous to the uniqueness of prime factorisation of natural numbers.

متن کامل

Simple Tensor Products

Let F be the category of finite dimensional representations of an arbitrary quantum affine algebra. We prove that a tensor product S1⊗· · ·⊗SN of simple objects of F is simple if and only if for any i < j, Si ⊗ Sj is simple.

متن کامل

Products of Conjugacy Classes in Finite and Algebraic Simple Groups

We prove the Arad–Herzog conjecture for various families of finite simple groups — if A and B are nontrivial conjugacy classes, then AB is not a conjugacy class. We also prove that if G is a finite simple group of Lie type and A and B are nontrivial conjugacy classes, either both semisimple or both unipotent, then AB is not a conjugacy class. We also prove a strong version of the Arad–Herzog co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2021

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/btran/58